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Abstract

This paper investigates optimal portfolio and wealth strategy of an institutional investor

under the Value-at-Risk (VaR) constraint in an economy under jump diffusion. We show

that overlooking or underestimating jump risk factor could be the cause of failure to sat-

isfy the VaR constraint in the recent financial crisis for many financial institutions. We

also find that the introduction of the jump risk factor drives the institutional investor to

move towards the portfolio insurance strategy, alleviating the problem with VaR identi-

fied by Basak and Shapiro (2001) that VaR risk manager incurs larger losses than non risk

manager in worst scenarios.
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1 Introduction

In this paper, we study optimal portfolio and wealth policies of an institutional investor max-

imizing her utility and facing the Value-at-Risk (VaR) constraint in an economy under jump

diffusion. Specifically, the investor can access not only the bond and stock markets but also

to the derivative market to manage the two risk exposures, namely the jump risk exposure and

the diffusion risk exposure, under the VaR constraint.

The past few years have witnessed a global financial meltdown, which raised a heated

discussion on the massive failures of risk measurement and management in the financial in-

dustry. Due to its practical advantages, VaR is widely used by financial as well as nonfinancial

firms as a tool to manage and control risk (Basak and Shapiro (2001)). As outlined by the

Finance Professor Rene Stulz, both ignoring known risk and devising the wrong response to

risk can lead to financial mismanagement. Therefore, it is highly likely that the failures oc-

curring in the recent financial crisis are stemming from overlooking some major risk factors

such as the jump risk and using the risk measures in an inappropriate way. Basak and Shapiro

(2001) analyze a dynamic optimization problem of the VaR agent only facing the diffusion

risk. It is therefore natural to extend their work by incorporating jump risk into the VaR risk

management framework.

Our paper builds on the literature on options investment and pricing. Liu and Pan (2003)

study a portfolio choice problem with both jump risk and stochastic volatility and highlight

the role of the options in investment from the speculative point of view. Tan (2009) analyzes

the attractiveness of European style call and put options for long horizon investors. In addi-

tion, most articles are focusing on the market incompleteness and the option pricing (see, for

example, Zhang, Zhao, and Chang (2012) and Kou (2002)). On the other hand, a variety of

empirical works estimate the jump risk premium embedded in the options (see, for example,

Bates (2000) and Pan (2002)). While it is well documented how the derivatives are used to

span the market and how price jumps affect the asset allocation, few papers emphasize the

hedging roles of derivatives in a proper context. Ahn, Boudoukh, Richardson, and Whitelaw
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(1999) is one of exceptions to analyze the roles of options in minimizing the firms’ VaR. How-

ever, they solve the problem in the Black Scholes world in which the options are redundant,

and only explore the usage of options from the perspective of risk management. In contrast,

we intend to examine asset allocation problem by employing options to manage the jump risk

in a VaR-framework and highlight the hedging roles of options.

Our paper also builds on the literature studying the dynamic optimization problem un-

der risk measure constraints in a variety of settings. Basak and Shapiro (2001) study the

institutional investors’ portfolio construction and wealth polices subject to a single-VaR con-

straint and a single Limited-Expected-Losses (LEL) constraint, and find that the presence of

VaR-type investor magnifies the market volatility by inducing increased risk exposure in "bad

states". By allowing for dynamically reevaluated VaR limit, Cuoco, He, and Isaenko (2008)

find that a VaR limit does not necessarily generate negative impact and actually serves as an ap-

propriate tool in managing risk. Shi and Werker (2012) extend Cuoco, He, and Isaenko (2008)

by imposing repeated short-horizon VaR limits and allowing for rebalancing of the portfolio

between two VaR reviews and examine the effects of the misalignment between investment

and regulation horizons on the portfolio strategy of the institutional investors. Different from

the extant literature, however, our paper is the first to study the effects of jump risk on the

optimal portfolio strategy under the VaR constraint.

The rest of the paper is organized as follows.

2 The Model

We consider a complete financial market with a finite horizon [0, T ]. In this market, three

securities are available: a riskless bond paying a constant interest rate r, a risky stock repre-

senting the aggregate equity market and a derivative security based on the stock. Denote by

B, S, O the price processes of the bond, the stock and the derivative security. The dynamics
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for the price processes of the bond and the stock are assumed as follows:

dBt

Bt−
= rdt, (1)

dSt
St−

=
(
r + ησ + µ

(
λ− λQ

))
dt+ σdZt + µ (dNt − λdt) , (2)

where Z is a standard Brownian motion andN is a pure-jump process. They are assumed to be

independent of each other. σ is the equity market volatility. µ and λ are the jump size and jump

arrival intensity associated with the pure-jump process N . Following Liu and Pan (2003), we

assume constant jump sizes, which imply that conditional on a jump arrival, the stock price

jumps by a constant multiple of µ > −1, with the limiting case of −1 capturing total loss.

The benefit of this simple specification is that only one extra derivative security is needed

to complete the market with respect to the jump risk. Furthermore, we don’t incorporate

stochastic volatility and jump in volatility in our model, which are common in the literature

on options (see, for example, Liu and Pan (2003) and Branger, Schlag, and Schneider (2008)),

because our focus is not on the empirical properties of options but rather on the the role of

options in hedging jump risk under the framework of the VaR risk management. Finally, η

and λQ capture the two components of the equity premium: one is for diffusive risk Z and the

other for jump risk N .

The price the derivative security is assumed to follow:

dOt

Ot−
=

(
r + η

gS
Ot

Stσ +
∆g

Ot

(
λ− λQ

))
dt+

gS
Ot−

StσdZt +
∆g

Ot−
(dNt − λdt) (3)

where gS measures the sensitivity of the derivative price to the infinitesimal changes in the

stock price and ∆g measures the change in the derivative price for each stock price jump.

Specifically,

gS =
∂g(S)

∂S
; ∆g = g((1 + µ)St)− g(St) (4)
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The self-financing condition implies that the wealth process evolves as,

dWt

Wt−
=
(
r + πZt ησ + πNt−µ

(
λ− λQ

))
dt+ πZt σdZt + πNt−µ(dNt − λdt), (5)

where πZt and πNt capture the exposure of the wealth process to diffusive risk and jump risk

respectively. Denote by xS and xO the fractions of wealth invested in the stock and derivative

security. Then, πZt and πNt are defined by,

πZt = xSt + xOt
gSSt
Ot

, (6)

πNt = xSt + xOt
∆g

µOt

. (7)

The interpretation of (6) and (7) is that by investing xS of the wealth in the stock and xO in the

derivative security amounts to investing πZt in the diffusive risk factor Z, πNt in the jump risk

factor N . It is important to realize that to complete the market with respect to jump risk, the

derivative security must have different sensitivities to infinitesimal and large changes in stock

prices: gSSt
Ot
6= ∆g

µOt
.

In the complete market described above, there exits a unique pricing kernel ξ, whose dy-

namics is,
dξt
ξt−

= −rdt− ηdZt −
(

1− λQ

λ

)
(dNt − λdt) (8)

where ξ0 = 1. As we focus on negative jumps µ < 0, the market price of jump risk must

be negative, which mandates λQ > λ. It is important to recognize that the introduction of

the jump risk may lead to major variations in the distribution of ξ, which are likely to have

substantial impact on the risk management and measurement. Note that when there is no jump

risk premium (λQ = λ), the third term in (8) drops out and (8) reduces to pricing kernel in the

absence of jump risk.
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3 Optimization under the VaR constraint

3.1 Optimal Portfolio Wealth

We consider an institutional investor, who is initially endowed with wealth of W0 and is con-

cerned with maximizing the expected utility over the terminal wealth. We assume that the

institutional investor has CRRA preferences with relative risk aversion of γ and a fixed invest-

ment horizon of T .

The institutional investor is subject to a constraint of a VaR type at the horizon imposed

by the regulator, which can be formulated as

P (WT ≤ W ) ≤ α, (9)

where the "floor" W and the loss probability α are specified exogenously by the regulator.

The VaR constraint requires that the probability that the institutional investor’s wealth at the

horizon falls below the floor wealth W be α or less. Following Basak and Shapiro (2001), We

also consider two alternative cases: one is the benchmark case (B), in which the VaR constraint

is never binding and the other one is the portfolio insurance case (PI), in which the horizon

wealth is constrained to be above the floor W in all states. Note that (9) nests both the B-case

and the PI-case, which correspond to α = 1 and α = 0 respectively. Therefore, the VaR-case

can be thought of as an intermediate case between the two extreme cases, the B-case and the

PI-case.

The portfolio optimization problem of the VaR agent can be formulated as follows,

max
WT

E

[
W 1−γ
T

1− γ

]
(10)

subject to E[ξTWT ] 6 ξ0W0 (11)

P (WT 6 W ) 6 α. (12)
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Following Basak and Shapiro (2001), we solve this problem using the martingale represen-

tation approach. Proposition 1 characterizes the optimal terminal wealth under the VaR con-

straint.

Proposition 1. The time-T optimal wealth of the VaR agent is

W V aR
T =



(
yV aRξT

)− 1
γ if ξT < ξV aR,

W if ξV aR 6 ξT < ξ̄V aR,(
yV aRξT

)− 1
γ if ξT > ξ̄V aR.

(13)

where ξV aR = W−γ

yV aR
, ξ̄V aR is such that P (ξT > ξ̄V aR) = α, and yV aR is the Lagrange

multiplier of the budget constraint and solves E
[
ξTW

V aR
T

]
= ξ0W0. The VaR constraint is

binding if and only if ξV aR < ξ̄V aR. Moreover, yV aR ∈
[
yB, yPI

]
.

Proposition 1 indicates that if the VaR constraint is binding, the VaR agent’s optimal hori-

zon wealth is classified into three distinct regions: in both regions of "good states"
[
ξT < ξV aR

]
and "bad states"

[
ξT > ξ̄V aR

]
, her terminal wealth is decreasing in ξT , while in the region of

"intermediate states"
[
ξV aR 6 ξT < ξ̄V aR

]
her terminal wealth is kept constant at the portfolio

insurance level. The definition of the upper bound ξ̄V aR implies that the probability of the bad

states region stays constant at α. Moreover, yV aR ∈
[
yB, yPI

]
confirms that the VaR case is

intermediate between the B case and the PI case.

Basak and Shapiro (2001) show that the VaR agent’s optimal terminal wealth in (13) can

be decomposed as

W V aR
T (y(W0)) = W PI

T (yB (W∗))− (W −WB
T (yB (W∗)))1{ξT>ξ̄} (14)

= WB
T (yB (W∗)) + (W −WB

T (yB (W∗)))1{ξ6ξT<ξ̄}, (15)

where W∗ is set so that yB (W∗) = y(W0). Put differently, W V aR is equivalent to a PI solu-

tion plus a short position in "binary" options, or a B solution plus an appropriate position in

"corridor" options.
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Figure 1: Optimal horizon wealth of three types of agents. The figure plots the optimal horizon wealth
of the VaR agent (solid line), the benchmark agent (dashed line) and the portfolio insurance agent
(dotted line). The parameter values are: λ = 1, λQ = 1.5, ξ0 = 1, r = 0.05, η = 0.4, σS = 0.18,
T = 1, t = 0.5, γ = 1, α = 0.01, W0 = 1, W = 0.9.

Figure 1 illustrates the optimal terminal wealth of a VaR agent, a benchmark agent (α = 1)

and a portfolio insurance agent (α = 0). Consistent with Proposition 1, in both regions of good

states and bad states, the VaR agent behaves like the B agent. In contrast, in the intermediate

states she adopts portfolio insurance strategy as the PI agent does. A striking feature of the

VaR agent’s horizon wealth strategy is that she leaves the bad states fully uninsured, as they

are most costly to insure against; her wealth is even lower than the B agent’s wealth in the

worst state for any given ξT . In other words, the VaR agent ignores losses in the upper tail

of the ξT distribution, which is independent of the agent’s preferences and endowment but

dependent on the jump risk premium.

Figure 2 illustrates the distribution of the pricing kernel at horizon for different jump pa-

rameters. Note that λQ/λ = 1 corresponds to zero jump risk premium and reduces to the

Basak and Shapiro case. Obviously, as the jump risk premium increases, the distribution of ξT
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Figure 2: Distribution of the pricing kernel at horizon. The left plots the distribution of the pricing
kernel at horizon for different jump parameters, while the right panel plots the upper tail of the distri-
bution. In both panels, the black solid line is for λQ/λ = 1, the blue dashed line is for λQ/λ = 1.5
and the red dashed line is for λQ/λ = 2. The red solid line is for ξ̄ in the Basak and Shapiro case. λ is
fixed at 1, while λQ varies in different cases. Other parameter values are: ξ0 = 1, r = 0.05, η = 0.4,
T = 1.

moves leftwards, while the upper tail of the distribution gets fat. The detrimental consequence

of these variations is that the probability beyond the upper bound of the states ξ̄V aR implied

by Basak and Shapiro (2001) exceeds the pre-specified loss probability α, thereby leading

to violation of the VaR constraints. This observation is more clearly confirmed by the right

panel, which plots the upper tail of the distribution of ξT . In other words, if an institutional

investor follows the terminal wealth distribution proposed by Basak and Shapiro (2001) in a

market with positive jump risk premium, she will choose a larger region as bad states, which

she leaves completely uninsured, than what it is supposed to be as implied by the distribution

of ξT and make too aggressive investment decisions. Therefore, overlooking jump risk could

be a cause of failure to satisfy the VaR constraints in the recent financial crisis for many in-

stitutional investors. Therefore, although Proposition 1 is almost identical to the solution in

Basak and Shapiro (2001) except for the specific CRRA utility function, fundamental differ-
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Table 1: Classification of States for Optimal Horizon Wealth Under the VaR Constraint

λ λQ ξV aR ξ̄V aR PrV aR PrPI yV aR yB yPI

1 1 0.99 2.23 37.0% 40.5% 1.12 1 1.15
1 1.5 0.91 3.51 37.7% 43.6% 1.22 1 1.31
1 2 0.83 5.98 33.1% 42.2% 1.34 1 1.60
1 3 0.82 10.38 21.4% 26.5% 1.35 1 1.69

1.5 2 0.93 3.12 38.5% 43.7% 1.20 1 1.27
1.5 3 0.80 7.27 30.8% 40.1% 1.39 1 1.74
2 3 0.86 4.50 37.3% 44.8% 1.30 1 1.46

The table shows the classification of the state of the world for optimal horizon wealth under the VaR constraint. PrV aR is the probability
that the VaR agent’s terminal wealth is under portfolio insurance. PrPI is the probability that the PI agent’s terminal wealth is under
portfolio insurance. The parameter values are: ξ0 = 1, r = 0.05, η = 0.4, T = 1.

ences exist between our jump case and the Basak and Shapiro case due to the leftward shift in

the distribution of the pricing kernel.

Table 1 reports the classification of states for optimal horizon wealth under the VaR con-

straint for different jump parameters. The upper bound ξ̄V aR is decreasing in λ for any given

λQ, but increasing in λQ for any given λ. In contrast, the opposite holds for the lower bound

ξV aR. As a consequence, the region of the intermediate states widens as the jump risk pre-

mium increases. These results are obviously consistent with Figure 1: as the tail gets fat, ξ̄V aR

must increase to make sure that the probability beyond ξ̄V aR is equal to α. On the other hand,

ξV aR must decrease to satisfy the budget constraint due to the leftward shift in the distribution

of ξT . While the probability in the region of worst states remains constant at α as prescribed

by the VaR constraint, the probability in each of the two regions varies across different jump

risk premiums. Since the VaR agent chooses to fully insure against the intermediate states,

one can think of the probability in the region of the intermediate states as the cost of satisfying

the VaR constraint. In Table 1, we denote the probability that the terminal wealth is under

portfolio insurance for the VaR agent by PrV aR and that for the PI agent by PrPI . It is re-

vealed that in general, both PrV aR and PrPI decrease with the jump risk premium, indicating

lower costs of meeting the VaR constraints. This can be explained by the fact that although

both ξV aR and the whole distribution of ξT shift to the left due to the jump premium, the latter

one shifts more sharply when λ is sufficiently large, rendering the probability under portfolio

insurance to shrink. In addition, while the Lagrange multiplier in the B case keeps constant,
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the Lagrange multiplier in both the VaR case and the PI case increases with the jump risk pre-

mium, implying that the introduction of jump risk premium induces both the VaR and the PI

agents to deviate more from the benchmark case. How to interpret the wider gap between

yV aR and yPI?

3.2 Trading Strategies

Proposition 2 characterizes the optimal wealth and portfolio strategies before the horizon un-

der the VaR constraint.

Proposition 2. The time-t optimal wealth is given by

W V aR
t =

eΓt

(yξt)
1
γ

−

{
eΓt

(yξt)
1
γ

Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξV aR)− Ψ(Nt)

η
√
τ

)]

−W e−rτEt

[
e−Ψ(Nt)N

(
−d2(ξV aR)− Ψ(Nt)

η
√
τ

)]}

+

{
eΓt

(yξt)
1
γ

Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξ̄V aR)− Ψ(Nt)

η
√
τ

)]

−W e−rτEt

[
e−Ψ(Nt)N

(
−d2(ξ̄V aR)− Ψ(Nt)

η
√
τ

)]}
(16)

where τ = T − t, y is given in Proposition 1, N (·) is the standard-normal cumulative distri-
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bution function and

ξV aR =
1

yW γ ,

Γ(t) =
1− γ
γ

(
r +

η2

2

)
τ +

(
1− γ
γ

)2
η2

2
τ,

Ψ(Nt) = (λQ − λ)τ − ln

(
λQ

λ

)
(NT −Nt)

d2(x) =
ln
(
x
ξt

)
+
(
r − η2

2

)
τ

η
√
τ

,

d1(x) = d2(x) +
η

γ

√
τ .

Note that all of the expectations in (16) are taken with respect to (NT −Nt).

The exposure of the optimal portfolio to the risk factors Z and N is given by,

πZ,V aRt =
η

σγ
− e−rτηW

σγW V aR
t

Et

[
e−Ψ(Nt)

(
N
(
−d2(ξV aR)− Ψ(Nt)

η
√
τ

)
−N

(
−d2(ξ̄V aR)− Ψ(Nt)

η
√
τ

))]
+

e−rτW

σ
√
τW V aR

t

Et

[
e−Ψ(Nt)

(
φ

(
d2(ξ̄V aR) +

Ψ(Nt)

η
√
τ

)
− φ

(
d2(ξV aR) +

Ψ(Nt)

η
√
τ

))]
− eΓt(yξt)

− 1
γ

σ
√
τW V aR

t

Et

[
e

1−γ
γ

Ψ(Nt)

(
φ

(
d1(ξ̄V aR) +

Ψ(Nt)

η
√
τ

)
− φ

(
d1(ξV aR) +

Ψ(Nt)

η
√
τ

))]
,

(17)

πN,V aRt =
σ
(

1− λQ

λ

)
µη

πZ,V aRt . (18)

In the benchmark case, the exposure of the optimal portfolio to the risk factor Z is,

πBt =
η

γσ
(19)
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Let qV aRt = πZ,V aRt /πBt . Then qV aR is,

qV aRt = 1− e−rτW

W V aR
t

Et

[
e−Ψ(Nt)

(
N
(
−d2(ξV aR)− Ψ(Nt)

η
√
τ

)
−N

(
−d2(ξ̄V aR)− Ψ(Nt)

η
√
τ

))]
+

γe−rτW

η
√
τW V aR

t

Et

[
e−Ψ(Nt)

(
φ

(
d2(ξ̄V aR) +

Ψ(Nt)

η
√
τ

)
− φ

(
d2(ξV aR) +

Ψ(Nt)

η
√
τ

))]
− γeΓt(yξt)

− 1
γ

η
√
τW V aR

t

Et

[
e

1−γ
γ

Ψ(Nt)

(
φ

(
d1(ξ̄V aR) +

Ψ(Nt)

η
√
τ

)
− φ

(
d1(ξV aR) +

Ψ(Nt)

η
√
τ

))]
.

(20)

Transforming the π’s to the optimal portfolio weights on the stock xSt and the option xOt ,

we have

xSt =

1−
(

∆g

µOt

− gSSt
Ot

)−1
gSSt
Ot

σ
(

1− λQ

λ

)
µη

− 1

 πZ,V aRt (21)

xOt =

(
∆g

µOt

− gSSt
Ot

)−1
σ

(
1− λQ

λ

)
µη

− 1

 πZ,V aRt (22)

Once again, consistent with Basak and Shapiro (2001), (16) reveals that the optimal time-t

wealth consists of three components: a myopic component that maximizes Sharpe ratio and

represents the optimal wealth of the B agent and two option components that correspond to a

long position in a put option on the B agent’s wealth with strike price of W and a short

position in a binary option on the same security with the same strike price. However, in

contrast to Basak and Shapiro (2001), the option prices do not immediately follow from the

Black-Scholes option pricing formula, but rather are computed as the expectation of option

prices conditional on jumps realized with respect to the jump risk factor.

Figure 3 depicts the optimal wealth of the VaR agent, the B agent and the PI agent at

time t. The optimal prehorizon wealth of the VaR agent behaves similarly to that of the B

agent in both the good and bad states. In contrast, in the intermediate region, the VaR agent’s

wealth does not coincide with the PI agent’s wealth, because she just begins to insure against
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Figure 3: Optimal time-t wealth of different types of agents. The figure plots the optimal time-t wealth
of the VaR agent, the benchmark agent and the portfolio insurance agent. The black solid line is for
λQ/λ = 1, the blue dashed line is for λQ/λ = 1.5 and the red dashed line is for λQ/λ = 2. The solid
line is for the benchmark case and the dotted line is for the portfolio insurance case. λ is fixed at 1,
while λQ varies in different cases. Other parameter values are: ξ0 = 1, r = 0.05, η = 0.4, σS = 18,
T = 1, t = 0.5, γ = 1, α = 0.01, W0 = 1, W = 0.9.

intermediate state. An interesting observation is that as the jump risk premium increases, the

VaR agent enjoys higher wealth in the intermediate and worst states at the expense of lower

wealth in the favorable states. More importantly, her wealth goes above the B agent’s wealth in

more of bad states, thereby alleviating the problem with VaR identified by Basak and Shapiro

(2001) that under the VaR constraints, risk managers optimally take larger exposure to risky

assets in unfavorable states and incur larger losses than non-risk managers.

Figure 4 illustrates the optimal time-t equity exposure of the VaR agent, the B agent and

the PI agent relative to the B agent’s equity exposure. In the two extreme states, the VaR

agent acts like the B agent. In between, her equity exposure first moves similarly to the PI

agent and decreases with ξt. Then, she takes increasingly large equity exposure, as the states

worsen. Finally, when ξT is sufficiently large, the VaR agent’s equity exposure again goes
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Figure 4: Optimal time-t equity exposure of different types of agents. The left panel plots the optimal
time-t equity exposure of the VaR agent, the benchmark agent and the portfolio insurance agent. The
right panel plots the optimal pre-horizon risk exposure of the VaR agent in the Basak and Shapiro case
for different α for comparison purpose. In the left panel, the solid line is for λQ/λ = 1, the blue
dashed line is for λQ/λ = 1.5 and the red dashed line is for λQ/λ = 2. The black dashed line is for
the benchmark case and the dotted line is for the portfolio insurance case. In the right panel, the solid
line is for α = 0.01, the blue dashed line is for α = 0.001 and the red dashed line is for α = 0.1. λ is
fixed at 1, while λQ varies in different cases. Other parameter values are: ξ0 = 1, r = 0.05, η = 0.4,
σS = 18, T = 1, t = 0.5, γ = 1, α = 0.01, W0 = 1, W = 0.9.

back toward the benchmark case. The fluctuation of the VaR agent’s equity exposure is due

to insuring against the intermediate states: when ξt is not so high, she chooses to take a large

equity exposure to achieve portfolio insurance level W . On the contrary, when ξt is already

very high, all hope is gone and she simply behaves like the B agent. On the other hand, it is

obvious that the jump component in the pricing kernel causes the VaR agent to deviate more

from the benchmark case and her equity exposure to fluctuate in a larger region. Interestingly,

comparison with the Basak and Shapiro case for different α in the right panel reveals that the

effect of increasing jump risk premium is similar to that of decreasing α in the benchmark

case but is even larger. Therefore, larger jump size of the pricing kernel drives the VaR agent
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to adjust her asset allocation towards the PI case, making the properties of VaR more desirable

from risk management point of view.

(Rewritten part)

Proposition 2 presents the optimal portfolio weights on the stock xSt and the option xOt .

Note that the case of µ = 0 and λQ = λ = 0 corresponds to no jump risk framework and

reduces to Basak and Shapiro case. In such a setting, the derivative security is redundant,

xSt = πZ,V aRt , (23)

xOt = 0. (24)

Obviously, in a setting with jump risk, the risky stock is affected by two types of risk factors:

the diffusive price shock with constant volatility σ, and the jump with Poisson arrival λ and

deterministic jump size µ. To complete the market with respect to both the diffusive and jump

risks, one derivative security is needed. In such a setting, we will compare the results with that

of Liu and Pan (2003), who investigate the optimal portfolio problem under the same market

setting for an investor without VaR constraint. Transforming the optimal portfolio weights on

the stock xSt and the option xOt , we have,

xSt = πZ,V aRt − xOt
gSSt
Ot

, (25)

xOt =

(
∆g

µOt

− gSSt
Ot

)−1

(πN,V aRt − πZ,V aRt ). (26)

Consistent with the results of Liu and Pan (2003), the optimal weight on the option xOt is

inversely proportional to its ability to disentangle the two exposures. For example, if an option

is equally sensitive to infinitesimal and large changes in stock prices, that is, gSSt
Ot

= ∆g
µOt

, then

it is not effective at all in providing separate exposures to both the diffusive and jump risks.

As a result, the derivative security is redundant. On the contrary, if an option is effective in

providing separate exposure, that is, gSSt
Ot
6= ∆g

µOt
, then it is needed to complete the market. The

more effective it is in disentangling the two risk factors, the less it is needed, holding other
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things constant. In contrast to the results of Liu and Pan (2003), the optimal portfolio weight

xOt on the option depends on the exposure to the diffusive risk πZ,V aRt and to the jump risk

πN,V aRt rather than the case without the VaR constraint.

In our economy setting, the risk-and-return tradeoff is the ultimate driving force for invest-

ing the option. If the two risk factors are equally attractive, then the option is also redundant.

In this case, the relative value of the two coefficients for the premia of two risk factors, λ
Q

λ
and

η respectively, is set such that
λQ

λ
= 1− µη

σ
. (27)

From (22), the optimal weight on the option xOt is zero. Because the agent finds the diffusive

and jump risks equally attractive, her willingness to disentangle them diminishes, leading to a

zero option holding as well. However, the empirical evidence from the option market indicates

that the coefficient λ
Q

λ
is much higher than 1− µη

σ
(see, for example Pan (2002)). Then, when

we consider the option and stock ratio,

xSt
xOt

=

(
1−

(
∆g
µOt
− gSSt

Ot

)−1
gSSt
Ot

(
σ
(

1−λ
Q

λ

)
µη

− 1

))
(

∆g
µOt
− gSSt

Ot

)−1
(
σ
(

1−λQ
λ

)
µη

− 1

) , (28)

we find that the option can be used by the agent to load more on the jump risk, holding the

condition that it can disentangle the two risk factors. As illustrated in Table 2, when the jump

risk permia coefficient λQ

λ
jumps from 1.5 to 2, the agent would hold more short positions

in put options irrespective of moneyness and time to maturity. In addition, the increase in the

jump size µ (absolute value) can have an opposite effect on the option weight. 1 In the situation

with large, negative jumps, the agent would not hold too much of jump risk regardless of the

high jump risk premium.

The quantitative analysis of optimal strategies is presented in Table 2. Here we consider

one jump case: µ = −10% jumps once every 10 years and a set of jump risk premia λQ

λ
. We

1To save space, we do not report detailed results and corresponding tables here.
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investigate the cross-sectional variation of stock option ratio with respect to both moneyness

and maturity. As mentioned before, the out-of-the-money (OTM) put options are effective in

distinguishing two risk factors. Put differently, the first term in 26 is more negative for deep

OTM put options. Then we incorporate one at-the-money (ATM) option and two OTM options

into our analysis.

If jump risk is not being compensated (λ
Q

λ
=1), the agent simply use risky stocks to obtain

the optimal exposure to diffusive risk. As the risky stocks are suffering from the negative

jump (here we only consider the adverse jump), the investor has to hold a small amount of

put options to hedge such risk (see the second term in 26 for the delta hedging role played by

the options). On one hand, one holds relative fewer amounts of put options with respect to

moneyness because a much deeper OTM put option is more effective to disentangle two risk

exposures. On the other hand, one holds relative more amounts of put options with respective

to time-to-maturity as one has to bear more risks in a longer horizon.

Moreover, the stock holding is switching from positive to negative position as the jump

risk premium increases, so does the put option. This is a consequence of the fact that jump

risk is becoming more attractive relative to diffusive risk and the agent takes short position to

earn this premium, which is consistent with a variety of empirical evidence such as Driessen

and Maenhout (2007).

4 Optimization under the LEL Constraint

4.1 Optimal Portfolio Wealth

In this section, we investigate the optimal portfolio strategy under the constraint of Limited

Expected Losses (LEL), an alternative risk measure to VaR. In contrast to VaR, which penal-

izes a high probability of the portfolio wealth loss, LEL is aimed at limiting the magnitude
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Table 2: Optimal Strategies under the VaR constraint

1 Month 3 Month 1 Year
λQ

λ
ATM 5% OTM 10%OTM ATM 5% OTM 10%OTM ATM 5% OTM 10%OTM

xSt 2.43 1.45 1.16 2.97 2.14 1.71 4.23 3.59 3.13
1 xOt 0.06 0.01 0.00 0.14 0.06 0.03 0.45 0.32 0.24

xSt
xOt

40.87 110.80 310.00 21.12 32.98 50.97 9.45 11.27 13.29

xSt -0.77 0.44 0.80 -1.43 -0.41 0.12 -2.95 -2.17 -1.61
1.5 xOt -0.07 -0.02 0.00 -0.17 -0.08 -0.04 -0.54 -0.39 -0.29

xSt
xOt

10.47 -27.33 -173.20 8.31 5.11 -2.94 5.46 5.63 5.65

xSt -3.90 -0.55 0.45 -5.71 -2.89 -1.43 -9.80 -7.69 -6.17
2 xOt -0.20 -0.04 -0.01 -0.47 -0.22 -0.11 -1.46 -1.04 -0.78

xSt
xOt

19.26 12.25 -35.08 12.08 13.19 12.59 6.72 7.37 7.96

This table shows the optimal strategies under the VaR constraint. The parameter values are:
r = 0.05, η = 0.4, σS = 0.18.

and is defined as,

E
[
ξT (W −WT )1{WT6W}

]
6 ε. (29)

where ε is the maximum wealth loss. The LEL constraint requires that the expected wealth

shortfall cannot exceed a pre-specified level ε. It is easy to verify that (29) also nests both the

B-case and the PI-case, which correspond to ε =∞ and ε = 0 respectively.

With LEL as an additional constraint, the portfolio optimization problem becomes,

max
WT

E

[
W 1−γ
T

1− γ

]
(30)

subject to E[ξTWT ] 6 ξ0W0, (31)

E
[
ξT (W −WT )1{WT6W}

]
6 ε. (32)

Proposition 3 characterizes the optimal terminal wealth under the LEL constraint.
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Proposition 3. The time-T optimal wealth of the LEL agent is

WLEL
T =



(
yLELξT

)− 1
γ if ξT < ξLEL,

W if ξLEL 6 ξT < ξ̄LEL,((
yLEL − yLEL1

)
ξT
)− 1

γ if ξT > ξ̄LEL.

(33)

where ξLEL = W−γ

yLEL
, ξ̄LEL = W−γ

yLEL−yLEL1
, and yLEL > 0, yLEL1 > 0 are two Lagrange

multipliers of the budget constraint and the LEL constraint respectively and solve the following

system:E[ξTW
LEL(T ; yLEL, yLEL1 )] = ξ0W0

E
[
ξT (W −WLEL(T ; yLEL, yLEL1 ))1{WLEL(T ;yLEL,yLEL1 )6W}

]
= ε or yLEL1 = 0.

(34)

The LEL constraint is binding if, and only if, ξLEL < ξ̄LEL.Moreover, the Lagrange multiplier

yLEL is decreasing in ε, yLEL ∈
[
yB, yPI

]
, and yLEL − yLEL1 6 yB.

Figure 5 shows the terminal wealth distribution for a LEL agent, a benchmark agent

(ε = +∞) and a portfolio insurance agent (ε = 0). These optimal wealth levels are deter-

mined analytically using Proposition 3. Comparison between Figure 1 and Figure 5 reveals

that different from the VaR case, the terminal wealth of the LEL agent is larger than the bench-

mark agent. The striking distinction follows from the fact that while the VaR agent leaves the

bad states fully uninsured, the LEL agent still maintains some level of insurance and makes

more conservative investment decisions for those states.

Figure 6 plots the distribution of the pricing kernel at horizon for different jump parame-

ters with ξ̄LEL in the Basak and Shapiro case. Obviously, the fatter tail of the distribution of

ξT induced by the increase in the jump risk premium generates higher probability of the occur-

rence of bad states and therefore larger losses in those states. As a consequence, the investor

cannot satisfy the LEL constraint, if she ignores the jump risk and pursues the terminal wealth

distribution in Basak and Shapiro (2001). This is consistent with the findings in the VaR case
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Figure 5: Optimal horizon wealth of three types of agents. The figure plots the optimal horizon wealth
of the LEL agent (solid line), the benchmark agent (dashed line) and the portfolio insurance agent
(dotted line). The parameter values are: λ = 1, λQ = 1.5, ξ0 = 1, r = 0.05, η = 0.4, σS = 0.18,
T = 1, t = 0.5, γ = 1, ε = 0.01, W0 = 1, W = 0.9.

and provides an explanation for the failure of regulation in the financial crisis.

Table 3 shows the classification of states for optimal horizon wealth under the LEL con-

straint for different jump parameters. The upper bound ξ̄V aR is increasing in the jump risk

premium due to the corresponding leftward shit in the distribution of ξT ; Confronted with

a fatter tail, the agent must increase the upper bound in order to limit the magnitude of the

losses in bad states. On the other hand, the budget constraint drives the lower bound ξV aR

to decrease, leading to larger range for the portfolio insurance strategy. Similarly to the VaR

case, PrLEL declines with the jump risk premium because of the large shift in the distribu-

tion of ξT . Moreover, as the jump risk premium increases, both the LEL and the PI agents

behave more differently from the benchmark agent in terms of the difference in the Lagrange

multiplier.
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Figure 6: Distribution of the pricing kernel at horizon. The left plots the distribution of the pricing
kernel at horizon for different jump parameters, while the right panel plots the upper tail of the distri-
bution. In both panels, the black solid line is for λQ/λ = 1, the blue dashed line is for λQ/λ = 1.5 and
the red dashed line is for λQ/λ = 2. The red solid line is for ξ̄LEL in the Basak and Shapiro case. λ is
fixed at 1, while λQ varies in different cases. Other parameter values are: ξ0 = 1, r = 0.05, η = 0.4,
T = 1.

4.2 Trading Strategies

Proposition 4 characterizes the optimal wealth and portfolio strategies before the horizon un-

der the LEL constraint.
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Table 3: Classification of States for Optimal Horizon Wealth Under the LEL Constraint

λ λQ ξLEL ξ̄LEL PrLEL PrPI yLEL yB yPI

1 1 0.99 1.83 35.4% 40.5% 1.13 1 1.15
1 1.5 0.86 3.61 41.2% 43.6% 1.28 1 1.31
1 2 0.71 10.52 40.7% 42.2% 1.56 1 1.60
1 3 0.67 17.78 25.8% 26.5% 1.65 1 1.69

1.5 2 0.89 2.92 40.8% 43.7% 1.24 1 1.27
1.5 3 0.66 13.72 38.8% 40.1% 1.69 1 1.74
2 3 0.78 5.76 42.9% 44.8% 1.42 1 1.46

The table shows the classification of the state of the world for optimal horizon wealth under the LEL constraint. PrLEL is the probability
that the LEL agent’s terminal wealth is under portfolio insurance. PrPI is the probability that the PI agent’s terminal wealth is under
portfolio insurance. The parameter values are: ξ0 = 1, r = 0.05, η = 0.4, T = 1.

Proposition 4. The time-t optimal wealth is given by

WLEL
t =

eΓt

(yLELξt)
1
γ

−

{
eΓt

(yLELξt)
1
γ

Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξLEL)− Ψ(Nt)

η
√
τ

)]

−W e−rτEt

[
e−Ψ(Nt)N

(
−d2(ξLEL)− Ψ(Nt)

η
√
τ

)]}

+

{
eΓt

((yLEL − yLEL1 ) ξt)
1
γ

Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξ̄LEL)− Ψ(Nt)

η
√
τ

)]

−W e−rτEt

[
e−Ψ(Nt)N

(
−d2(ξ̄LEL)− Ψ(Nt)

η
√
τ

)]}
(35)

where Γ(t), d1(x), d2(x) are as given in Proposition 2, (yLEL, yLEL1 ) are as given in Proposi-

tion 3, ξLEL = 1
yLELW γ and ξ̄LEL = 1

(yLEL−yLEL1 )W γ .

The exposure of the optimal portfolio to the risk factors Z and N is given by,

πZ,LELt =
η

σγ
− e−rτηW

σγWLEL
t

Et

[
e−Ψ(Nt)

(
N
(
−d2(ξLEL)− Ψ(Nt)

η
√
τ

)
−N

(
−d2(ξ̄LEL)− Ψ(Nt)

η
√
τ

))]
,

(36)

πN,LELt =
σ
(

1− λQ

λ

)
µη

πZ,LELt . (37)
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In the benchmark case, the exposure of the optimal portfolio to the risk factor Z is,

πBt =
η

γσ
. (38)

Let qLELt = πZ,LELt /πBt . Then qLELt is,

qLELt = 1−e−rτW

WLEL
t

Et

[
e−Ψ(Nt)

(
N
(
−d2(ξLEL)− Ψ(Nt)

η
√
τ

)
−N

(
−d2(ξ̄LEL)− Ψ(Nt)

η
√
τ

))]
.

(39)

The exposure to the risk factor Z relative to the benchmark is bounded below and above:

0 ≤ qLELt ≤ 1, and

lim
ξt→0

qLELt = lim
ξt→∞

qLELt = 1. (40)

Figure 7 depicts the optimal wealth of the LEL agent, the B agent and the PI agent at

time t. As in the VaR case, the optimal prehorizon wealth of the VaR agent acts similarly to

the benchmark agent’s wealth for low and high values of ξt but moves towards the portfolio

insurer’s wealth for intermediate values of ξt. As the jump risk increases, the LEL agent

attempts to insure increasingly more states and increase wealth in the higher tail of the xit

distribution at the expense of reduction in wealth in good states. This implies that the jump

risk drives the LEL agent to redistribute her asset allocation towards the bad states of the world

and behave more similarly to the PI agent.

Figure 8 illustrates the optimal time-t equity exposure of the LEL agent, the B agent and

the PI agent relative to the B agent’s equity exposure. In the two extremes, the LEL agents

acts similarly to the B agent and invests aggressively in the stock. In between, however, she

first reduces exposure to the risky asset as the PI agent in order to fully insure against the

intermediate states. Then, as the states worsen, she begins to leave states partially insured and

tend back toward the benchmark behavior. It is important to note that unlike the VaR agent,

the LEL agent has no incentive to gamble abound the upper bound and never takes a larger

equity exposure than the B agent because of the limit on the wealth losses. Therefore, the

LEL constraint turns out to remedy the shortcomings of the VaR constraint. The right panel
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Figure 7: Optimal time-t wealth of different types of agents. The figure plots the optimal time-t wealth
of the LEL agent, the benchmark agent and the portfolio insurance agent. The black solid line is for
λQ/λ = 1, the blue dashed line is for λQ/λ = 1.5 and the red dashed line is for λQ/λ = 2. The solid
line is for the benchmark case and the dotted line is for the portfolio insurance case. λ is fixed at 1,
while λQ varies in different cases. Other parameter values are: ξ0 = 1, r = 0.05, η = 0.4, σS = 18,
T = 1, t = 0.5, γ = 1, ε = 0.01, W0 = 1, W = 0.9.

shows the optimal prehorizon equity exposure without the jump risk for different levels of loss

tolerance. Obviously, the higher jump risk has similar effects to tighter LEL constraint on the

exposure to the stock: as the jump size of ξt rises, the LEL is confronted with higher proba-

bility of occurrence of bad states and has to shrink the bad-states region, which is associated

with lower equity exposure in the intermediate region. As a consequence, she moves towards

the PI policy, which is similar to the effect of lower ε.
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Figure 8: Optimal time-t equity exposure of different types of agents. The left panel plots the optimal
time-t equity exposure of the LEL agent, the benchmark agent and the portfolio insurance agent. The
right panel plots the optimal pre-horizon risk exposure of the LEL agent in the Basak and Shapiro case
for different α for comparison purpose. In the left panel, the solid line is for λQ/λ = 1, the blue
dashed line is for λQ/λ = 1.5 and the red dashed line is for λQ/λ = 2. The black dashed line is for
the benchmark case and the dotted line is for the portfolio insurance case. In the right panel, the solid
line is for ε = 0.01, the blue dashed line is for ε = 0.001 and the red dashed line is for ε = 0.05. λ is
fixed at 1, while λQ varies in different cases. Other parameter values are: ξ0 = 1, r = 0.05, η = 0.4,
σS = 18, T = 1, t = 0.5, γ = 1, α = 0.01, W0 = 1, W = 0.9.

5 Optimization under the CVaR Constraint

The portfolio optimization problem of the CVaR risk manager can be formulated as follows,

max
WT

E

[
W 1−γ
T

1− γ

]
(41)

subject to E[ξTWT ] 6 ξ0W0, (42)

E
[
(W −WT )1{WT6W}

]
6 δ. (43)

where δ ≥ 0 is a constant. Note that (43) also nests both the B-case and the PI-case, which

correspond to δ =∞ and δ = 0 respectively.
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Proposition 5 characterizes the optimal terminal wealth under the CVaR constraint.

Proposition 5. The time-T optimal wealth of the CVaR agent is

WCV aR
T =



(
yCV aRξT

)− 1
γ if ξT < ξCV aR,

W if ξCV aR 6 ξT < ξ̄CV aR,(
yCV aRξT − yCV aR1

)− 1
γ if ξT > ξ̄CV aR.

(44)

where ξCV aR = W−γ

yCV aR
, ξ̄CV aR =

W−γ+yCV aR1

yCV aR
, and yCV aR > 0, yCV aR1 > 0 are two Lagrange

multipliers of the budget constraint and CVaR constraint respectively and solve the following

system:E[ξTW
CV aR(T ; yCV aR, yCV aR1 )] = ξ0W0,

E
[
(W −WCV aR(T ; yCV aR, yCV aR1 ))1{WCV aR(T ;yCV aR,yCV aR1 )6W}

]
= δ or yCV aR1 = 0.

(45)

The CVaR constraint in (43) is binding if, and only if, ξCV aR < ξ̄CV aR.Moreover, the Lagrange

multiplier yCV aR is decreasing in δ, yCV aR ∈
[
yB, yPI

]
, and yCV aR − yCV aR1 6 yB.

Proposition 6 characterizes the optimal wealth and portfolio strategies before the horizon

under the CVaR constraint.

Proposition 6. The time-t optimal wealth is given by

WCV aR
t =

eΓt

(yCV aRξt)
1
γ

−

{
eΓt

(yCV aRξt)
1
γ

Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξCV aR)− Ψ(Nt)

η
√
τ

)]

−W e−rτEt

[
e−Ψ(Nt)N

(
−d2(ξCV aR)− Ψ(Nt)

η
√
τ

)]}

+

{
1

ξt
Et

[ˆ +∞

ln ξ̄CV aR
eln ξT− 1

γ
ln(yCV aRξT−yCV aR1 ) 1

η
√

2πτ
e
− (ln ξT−A)2

2η2τ d ln ξT

]
−W e−rτEt

[
e−Ψ(Nt)N

(
−d2(ξ̄CV aR)− Ψ(Nt)

η
√
τ

)]}
(46)
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where Γ(t), d1(x), d2(x) are as given in Proposition 2, A is as given in Appendix (Proof of

Proposition 2, A = ln ξt− (r+ 1
2
η2)τ −Ψ(Nt)), yCV aR, yCV aR1 , ξCV aR and ξ̄CV aR and are as

given in Proposition 5.

Under the CVaR constraint, neither WCV aR
t nor dWCV aR

t

dξt
can have analytical solutions.

However, in our numerical approximation, dW
CV aR
t

dξt
can be formulated as follows,

dWCV aR
t

dξt
≈
WCV aR
t,ξt+4ξt −W

CV aR
t,ξt−4ξt

24ξt
, (47)

where WCV aR
t,ξt+4ξt

(
WCV aR
t,ξt−4ξt

)
is the time-t optimal wealth when the pricing kernel is the value

ξt +4ξt (ξt −4ξt) , holding other values constant.

The exposure of the optimal portfolio to the risk factors Z and N is given by,

πZ,CV aRt = −η
σ

ξt−
Wt−

dWCV aR
t

dξt
(48)

= −η
σ

ξt
WCV aR
t

dWCV aR
t

dξt
(49)

= −η
σ

ξt
WCV aR
t

WCV aR
t,ξt+4ξt −W

CV aR
t,ξt−4ξt

24ξt
, (50)

πN,CV aRt =
σ
(

1− λQ

λ

)
µη

πZ,CV aRt . (51)

In the benchmark case, the exposure of the optimal portfolio to the risk factor Z is,

πBt =
η

γσ
. (52)

Let qCV aRt = πZ,CV aRt /πBt . Then qCV aRt is,

qCV aRt = −1

γ

ξt
WCV aR
t

WCV aR
t,ξt+4ξt −W

CV aR
t,ξt−4ξt

24ξt
. (53)
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Table 4: Classification of States for Optimal Horizon Wealth Under the CVaR Constraint

λ λQ ξCV aR ξ̄CV aR PrCV aR PrPI yCV aR yB yPI

1 1 1.01 1.68 31.3% 40.5% 1.10 1 1.15
1 1.5 0.92 2.60 34.9% 43.6% 1.20 1 1.31
1 2 0.84 4.51 31.5% 42.2% 1.32 1 1.60
1 3 0.86 7.07 19.9% 26.5% 1.30 1 1.69

1.5 2 0.94 2.31 35.2% 43.7% 1.18 1 1.27
1.5 3 0.82 5.49 29.3% 40.1% 1.36 1 1.74
2 3 0.87 3.38 35.3% 44.8% 1.28 1 1.46

The table shows the classification of the state of the world for optimal horizon wealth under the CVaR constraint. PrCV aR is the probability
that the CVaR agent’s terminal wealth is under portfolio insurance. PrPI is the probability that the PI agent’s terminal wealth is under
portfolio insurance. The parameter values are: ξ0 = 1, r = 0.05, η = 0.4, T = 1.

6 Conclusion

This paper studies optimal portfolio and wealth policies of an institutional investor under the

VaR constraint in an economy under jump diffusion. In our framework, the investor can access

not only the bond and stock markets but also to the option market to manage the jump risk

exposure and the diffusion risk exposure. The results are encouraging in several aspects. First,

we document that underestimating jump risk factor could be the cause of failure to satisfy the

VaR and LEL constraints in the recent financial crisis for many financial institutions. Second,

the introduction of the jump risk factor drives the institutional investor to behave like the

portfolio insurance manager, alleviating the problem with VaR identified by Basak and Shapiro

(2001) that VaR risk manager incurs larger losses than non risk manager in worst scenarios.

Third, unlike the VaR agent, the LEL agent has no incentive to gamble abound the upper

bound and never takes a larger equity exposure than the B agent because of the limit on the

wealth losses. Therefore, the LEL constraint turns out to remedy the shortcomings of the VaR

constraint.

To our best knowledge, this paper is the first to adopt pricing kernel with jumps in modeling

institutional investors as expected utility maximizers, who must comply with a VaR constraint

or a LEL constraint imposed at some horizon. As a result, this paper provides a potentially

useful way to evaluate VaR risk management and LEL risk management during the financial

crisis. The results here can be used both as benchmarks for models of VaR and as directions
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Figure 9: Optimal horizon wealth of three types of agents. The figure plots the optimal horizon wealth
of the CVaR agent (solid line), the benchmark agent (dashed line) and the portfolio insurance agent
(dotted line). The parameter values are: λ = 1, λQ = 1.5, ξ0 = 1, r = 0.05, η = 0.4, σS = 0.18,
T = 1, t = 0.5, γ = 1, ε = 0.01, W0 = 1, W = 0.9.

for future research. For example, there appears to be some parameter instability as the jump

risk premium change, our analysis may pave the way to modeling model uncertainty.

A Proof of Proposition 1

As we completely follow Basak and Shapiro (2001) in deriving Proposition 1, one can see the

Proof of Proposition 1 in the Appendix of Basak and Shapiro (2001) for reference.
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Figure 10: Distribution of the pricing kernel at horizon. The left plots the distribution of the pricing
kernel at horizon for different jump parameters, while the right panel plots the upper tail of the distri-
bution. In both panels, the black solid line is for λQ/λ = 1, the blue dashed line is for λQ/λ = 1.5
and the red dashed line is for λQ/λ = 2. The red solid line is for ξ̄ in the Basak and Shapiro case. λ is
fixed at 1, while λQ varies in different cases. Other parameter values are: ξ0 = 1, r = 0.05, η = 0.4,
T = 1.

B Proof of Proposition 2

With complete market assumption, Itô’s lemma implies that ξtWt is a martingale:

W V aR
t = Et

[
ξT
ξt
W V aR
T

]
= Et

[
ξT
ξt
I(yξT )|ξT < ξV aR

]
+ Et

[
ξT
ξt
W |ξ < ξT < ξ̄V aR

]
+ Et

[
ξT
ξt
I(yξT )|ξT > ξ̄V aR

]
(54)
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Figure 11: Optimal time-t wealth of different types of agents. The figure plots the optimal time-t wealth
of the CVaR agent, the benchmark agent and the portfolio insurance agent. The black solid line is for
λQ/λ = 1, the blue dashed line is for λQ/λ = 1.5 and the red dashed line is for λQ/λ = 2. The solid
line is for the benchmark case and the dotted line is for the portfolio insurance case. λ is fixed at 1,
while λQ varies in different cases. Other parameter values are: ξ0 = 1, r = 0.05, η = 0.4, σS = 18,
T = 1, t = 0.5, γ = 1, ε = 0.01, W0 = 1, W = 0.9.

We compute each term in (54) separately,

Et

[
ξT
ξt
I(yξT )|ξT < ξV aR

]
= Et

[
ξT
ξt

1

(yξT )
1
γ

|ξT < ξV aR

]

=
1

y
1
γ ξt

Et

[
Et

[
ξ

1− 1
γ

T |ξT < ξV aR, σ(NT −Nt)

]]
(55)

where the conditioning σ-algebra σ(NT − Nt) is the one generated by the random variable

(NT−Nt). To avoid confusion with the volatility parameter σ, we simply write it as (NT−Nt)

in what follows.
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Figure 12: Optimal time-t equity exposure of different types of agents. The left panel plots the optimal
time-t equity exposure of the CVaR agent, the benchmark agent and the portfolio insurance agent. The
right panel plots the optimal pre-horizon risk exposure of the CVaR agent in the Basak and Shapiro
case for different α for comparison purpose. In the left panel, the solid line is for λQ/λ = 1, the blue
dashed line is for λQ/λ = 1.5 and the red dashed line is for λQ/λ = 2. The black dashed line is for
the benchmark case and the dotted line is for the portfolio insurance case. In the right panel, the solid
line is for ε = 0.01, the blue dashed line is for ε = 0.001 and the red dashed line is for ε = 0.05. λ is
fixed at 1, while λQ varies in different cases. Other parameter values are: ξ0 = 1, r = 0.05, η = 0.4,
σS = 18, T = 1, t = 0.5, γ = 1, α = 0.01, W0 = 1, W = 0.9.

It is easy to see ln ξT follows normal distribution conditional on both Ft and (NT −Nt),

ln ξT |Ft, (NT −Nt) ∼ N (ln ξt − (r +
1

2
η2)τ −Ψ(Nt), η

2τ). (56)
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Let A = ln ξt − (r + 1
2
η2)τ −Ψ(Nt). Then, (56) implies

Et

[
ξ

1− 1
γ

T |ξT < ξV aR, (NT −Nt)

]
=

ˆ ln ξV aR

−∞
e
γ−1
γ

ln ξT 1√
2πτη

e
− (ln ξT−A)2

2η2τ d ln ξT

= exp

((
γ − 1

γ

)2
η2

2
τ +

γ − 1

γ
A

)ˆ ln ξV aR

−∞

1√
2πτη

e
−

(ln ξT−(A+η2(1− 1
γ )τ))

2

2η2τ d ln ξT

=
eΓt

ξ
1
γ
−1

t

e
1−γ
γ

Ψ(Nt)N
(
d1(ξV aR) +

Ψ(Nt)

η
√
τ

)
(57)

Substituting (57) into (54) yields,

Et

[
ξT
ξt
I(yξT )|ξT < ξV aR

]
=

1

y
1
γ ξt

Et

[
eΓt

ξ
1
γ
−1

t

e
1−γ
γ

Ψ(Nt)N
(
d1(ξV aR) +

Ψ(Nt)

η
√
τ

)]

≈ eΓt

(yξt)
1
γ

{
1− Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξV aR)− Ψ(Nt)

η
√
τ

)]}
,

(58)

where the approximation follows from the second order Taylor approximation. One can easily

calculate the remaining two terms in (54) in a similar fashion,

Et

[
ξT
ξt
W |ξV aR < ξT < ξ̄V aR

]
= e−rτWEt

[
e−Ψ(Nt)

(
−N

(
d2(ξV aR) +

Ψ(Nt)

η
√
τ

)
+N

(
d2(ξ̄V aR) +

Ψ(Nt)

η
√
τ

))]
(59)

Et

[
ξT
ξt
I(yξT )|ξT > ξ̄V aR

]
=

eΓt

(yξt)
1
γ

Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξ̄V aR)− Ψ(Nt)

η
√
τ

)]
(60)

Summing up (58), (59), (60), we obtain (54).

Applying Itô’s lemma to (54), we can easily get (17) and (18).
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C Proof of Proposition 3

The proof is as of proposition 1, except with yV aR, ξV aR, and ξ̄V aR replaced appropriately by

yLEL, ξLEL, and ξ̄LEL.

D Proof of Proposition 4

The proof of WLEL
t is as of the proof of W V aR

t in proposition 2, except with yV aR, ξV aR, and

ξ̄V aR replaced appropriately by yLEL, ξLEL, and ξ̄LEL.

Applying Itô’s lemma to (35), we can get

dWLEL
t

dξt
=

eΓt

(yLELξt)
1
γ

(−1

γ
)(ξt)

−1

{
1− Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξLEL)− Ψ(Nt)

η
√
τ

)]}
+

eΓt

((yLEL − yLEL1 ) ξt)
1
γ

(−1

γ
)(ξt)

−1Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξ̄LEL)− Ψ(Nt)

η
√
τ

)]
+

eΓt

(yLELξt)
1
γ

(−1)
(
η
√
τ
)−1

(ξt)
−1Et

[
e

1−γ
γ

Ψ(Nt)φ

(
−d1(ξLEL)− Ψ(Nt)

η
√
τ

)]
+

eΓt

((yLEL − yLEL1 ) ξt)
1
γ

(
η
√
τ
)−1

(ξt)
−1Et

[
e

1−γ
γ

Ψ(Nt)φ

(
−d1(ξ̄LEL)− Ψ(Nt)

η
√
τ

)]
+W e−rτ

(
η
√
τ
)−1

(ξt)
−1Et

[
e−Ψ(Nt)φ

(
−d2(ξLEL)− Ψ(Nt)

η
√
τ

)]
−W e−rτ

(
η
√
τ
)−1

(ξt)
−1Et

[
e−Ψ(Nt)φ

(
−d2(ξ̄LEL)− Ψ(Nt)

η
√
τ

)]
(61)

=
eΓt

(yLELξt)
1
γ

(−1

γ
)(ξt)

−1

{
1− Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξLEL)− Ψ(Nt)

η
√
τ

)]}
+

eΓt

((yLEL − yLEL1 ) ξt)
1
γ

(−1

γ
)(ξt)

−1Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξ̄LEL)− Ψ(Nt)

η
√
τ

)]
.

(62)
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The exposure of the optimal portfolio to the risk factor Z and N is given by,

πZ,LELt = −η
σ

ξt
WLEL
t

dWLEL
t

dξt

=
η

γσ

1

WLEL
t

eΓt

(yLELξt)
1
γ

{
1− Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξLEL)− Ψ(Nt)

η
√
τ

)]}
+
η

γσ

1

WLEL
t

eΓt

((yLEL − yLEL1 ) ξt)
1
γ

Et

[
e

1−γ
γ

Ψ(Nt)N
(
−d1(ξ̄LEL)− Ψ(Nt)

η
√
τ

)]
=

η

σγ
− e−rτηW

σγWLEL
t

Et

[
e−Ψ(Nt)N

(
−d2(ξLEL)− Ψ(Nt)

η
√
τ

)]
+

e−rτηW

σγWLEL
t

Et

[
e−Ψ(Nt)N

(
−d2(ξ̄LEL)− Ψ(Nt)

η
√
τ

)]
, (63)

πN,LELt =
σ
(

1− λQ

λ

)
µη

πZ,LELt . (64)
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